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We consider the weakly nonlinear evolution of the Faraday waves produced in a
vertically vibrated two-dimensional liquid layer, at small viscosity. It is seen that the
surface wave evolves to a drifting standing wave, namely a wave that is standing in a
moving reference frame. This wave is determined up to a spatial phase, whose calcu-
lation requires consideration of the associated mean flow. This is just the streaming
flow generated in the boundary layer attached to the lower plate supporting the liquid.
A system of equations is derived for the coupled slow evolution of the spatial phase
and the streaming flow. These equations are numerically integrated to show that the
simplest reflection symmetric steady state (the usual array of counter-rotating eddies
below the surface wave) becomes unstable for realistic values of the parameters. The
new states include limit cycles (the array of eddies oscillating laterally), drifted stand-
ing waves (patterns that are standing in a uniformly propagating reference frame)
and some more complex attractors.

1. Introduction
We consider the gravity–capillary waves named after Faraday (1831) that are

parametrically excited at the free surface of a liquid when the container is vertically
vibrated and the driven acceleration exceeds a threshold value. These waves have
been receiving renewed and increasing attention in the literature owing in part to
the impressive variety of experimentally observed behaviour (already reported by
Faraday, see Miles & Henderson 1990) that current theoretical approaches fail to
explain convincingly, specially in the low-viscosity limit. This limit is singular and its
analysis is subtle due in part to the presence of mean flows, which are well known
to affect the surface wave dynamics in related systems (e.g. Milewski & Benney
1995; Mashayek & Ashgriz 1998) and are frequently either ignored or treated in a
deficient way. Strictly inviscid mean flows have already appeared in the celebrated
equations derived by Davey & Stewartson (1974), but these flows neglect the effect of
viscous boundary layers, which can be essential even for quite small viscosity. These
boundary layers produce a viscous streaming flow (also called steady streaming or
acoustic streaming), which has been extensively analysed in other contexts (Riley 2001
and references therein). Also, this flow (i) was indirectly observed by Faraday (1831)
through the accumulation of sand at the bottom of the container, (ii) is sometimes
used to visualize the patterns (Douady 1990) and (iii) has been associated with pattern
rotation (Kiyashko et al. 1996); but it is otherwise ignored in connection with Faraday
waves.
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Figure 1. Sketch of the two-dimensional annular domain.

The role of the streaming flow is better uncovered in the absence of additional
effects like wave modulation, which leads to a complex description (Vega, Knobloch
& Martel 2001). Thus, we consider a spatially uniform surface wave, which seems
to be the one involved in some of the drift modes encountered by Douady, Fauve
& Thual (1989) in annular domains. These consisted of a drifted standing wave,
i.e. a spatially uniform, monochromatic wave that would be standing in a uniformly
rotating reference frame; see also Thual, Douady & Fauve (1989 p. 236) and Fauve,
Douady & Thual (1991 pp. 315–316) for a phenomenological description and Cross
& Hohenberg (1993 p. 1026) for a further discussion on these patterns.

The usual amplitude equations in the literature for weakly damped, spatially
uniform, monochromatic Faraday waves in a domain that allows propagation in
a particular direction account for damping, detuning, nonlinearity and parametric
forcing, are

A′ = [−δ − id+ iα3|A|2 − iα4|B|2]A+ iεα5B̄, (1.1)

B′ = [−δ − id+ iα3|B|2 − iα4|A|2]B + iεα5Ā, (1.2)

where A and B are the complex amplitudes of two counter-propagating waves and
|A| ∼ |B| � 1, δ � 1, d� 1 and ε � 1, while the coefficients α3, α4 and α5 are of
order unity. These equations ignore the streaming flow and lead to inconsistencies, as
we show now. The large time behaviour of (1.1)–(1.2) are standing waves (SWs) of
the form |A|=|B|=constant, determined up to a spatial phase ψ, which can be defined
as proportional to the difference between the phases of A and B, and is given by

ψ′ = 0. (1.3)

Note that ψ′ is a drift velocity of the pattern. On the other hand, if the fluid domain is
a two-dimensional laterally unbounded (figure 1), with periodic boundary conditions,
then after appropriate rescaling the streaming flow produced by the SWs is given by
the following well-known (see, e.g. Iskandarani & Liu 1991) system of equations and
boundary conditions

ũx + ṽy = 0, (1.4)

∂ũ/∂τ+ ṽ(ũy − ṽx) = −q̃x + Re−1(ũxx + ũyy), (1.5)



Drift instability of standing Faraday waves 59

0

–1

y

0 L
x

(b)

0

–1

y

0 L
x

(a)

Figure 2. Streamlines of the stable steady state of (4.8)–(4.13), with ψ = 0, for L = 1
2
π, m = 1 (k = 4),

(a) Re = 55, (b) Re = 70. Thick vertical lines correspond to the nodes of the surface waves, given
by (4.23).

∂ṽ/∂τ− ũ(ũy − ṽx) = −q̃y + Re−1(ṽxx + ṽyy), (1.6)

ũ = − sin 2kx, ṽ = 0 at y = −1, (1.7)

∂ũ/∂y = ṽ = 0, at y = 0, (1.8)

ũ, ṽ and q̃ are x-periodic, of period L = 2mπ/k. (1.9)

The forcing term in (1.7) comes from the well-known slowly varying effect of the
Stokes boundary layer attached to the lower plate (Batchelor 1967). The simplest
solution to this problem is a stationary array of counter-rotating eddies, like that
in figure 2(a), which has been numerically obtained for L = 1

2
π, m = 1 (k = 4) and

Re = 55. This pattern was qualitatively described by Liu & Davis (1977) and nu-
merically calculated by Iskandarani & Liu (1991), and is always assumed in the
literature (e.g. Douady 1990 figure 12) to be the only one associated with SWs. The
pattern is x-reflection-symmetric; thus it cannot induce any drift of the waves, which
is consistent with (1.3). However, this steady state of (1.4)–(1.9) is unstable if Re
exceeds a threshold value, which has not been noticed before to our knowledge.
In fact, a direct numerical integration (1.4)–(1.9) shows that the symmetric steady
state is stable only below the dashed curve in the Re vs. L diagram in figure 6. At
this curve, there is a symmetry breaking (pitchfork) bifurcation. The resulting stable,
non-reflection-symmetric patterns for higher Re are qualitatively similar to that in
figure 2(b), and exhibit a non-zero overall horizontal velocity; see Yan, Ingham &
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Morton (1993) for a similar result on a related problem. That streaming flow pattern
must induce a drift of the primary SW by convection, namely a non-zero term in the
right-hand side of (1.3). Thus, the usual amplitude equations (1.1)–(1.2) are faulty. The
correct equations should give the coupled evolution of the phase ψ and the streaming
flow in a natural way. In order to avoid further deficiencies, we will not rely on any
phenomenological argument. Instead, we shall derive the amplitude equations from
first principles, though for the sake of brevity some ingredients of these equations
that are well-known will be omitted.

With these ideas in mind, the remainder of the paper is organized as follows. The
problem is formulated in § 2. The correct extension of (1.1)–(1.2) is derived in § 3 and
used in § 4.1 first to show that the surface wave evolves to a drifting SW, namely, a
wave that is standing in a moving reference frame, and then to obtain a system of
equations giving the coupled evolution of the spatial phase ψ and the streaming flow.
This system of equations will be numerically explored in § 4.2, to obtain several steady
and time-dependent solutions that exhibit a non-zero drift of the surface waves. Some
conclusions will be made in § 5.

2. Formulation
We consider a horizontal two-dimensional liquid layer supported by a vertically

vibrating plate (figure 1). We use the height of the unperturbed free surface h and the
gravitational time (h/g)1/2 (where g is the acceleration due to gravity) as characteristic
length and time for non-dimensionalization. The governing equations are

ux + vy = 0, (2.1)

ut + v(uy − vx) = −qx + C(uxx + uyy), (2.2)

vt − u(uy − vx) = −qy + C(vxx + vyy), (2.3)

u = v = 0 at y = −1, (2.4)

v = ft + ufx, (uy + vx)(1− f2
x) + 2(vy − ux)fx = 0 at y = f, (2.5)

q − (u2 + v2)/2 + 4ω2εf cos(2ωt)− f + Tfxx/(1 + f2
x)

3/2

= 2C[vy + uxf
2
x − (uy + vx)fx]/(1 + f2

x) at y = f, (2.6)

u, v, p and f are periodic, of period L, in x. (2.7)

For convenience, we also recall that volume is conserved, i.e.∫ L

0

f(x, t) dx = 0. (2.8)

Here, u and v are the horizontal and vertical velocity components, f is the free
surface elevation (measured from the undisturbed position), and q = pressure +
(u2 + v2)/2 + y − 4ω2εy cos(2ωt); 2ω and ε are the forcing frequency and amplitude,
C = ν/(gh3)1/2 (ν = kinematic viscosity) is a ratio of viscous to gravitational effects
and T−1 = ρgh2/σ (ρ = density, σ = surface tension) is the Bond number.

We shall consider small, nearly resonant solutions at small viscosity, i.e.

|u|+ |v|+ |q|+ |f| � 1, ε� 1, |ω − ω0| � 1, C � 1, (2.9)

without further restrictions. Here, ω0 is a natural frequency in the inviscid limit.
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Figure 3. Damping rate of the surface modes for C = 10−5 and T = 7.3 × 10−4 using – – –, the
O(C1/2) results and ——, the O(C) results; the latter are indistinguishable from those obtained using
the exact dispersion relation.

3. Coupled amplitude-mean flow equations in two dimensions
The weakly nonlinear analysis of (2.1)–(2.7) in the limit (2.9) requires consideration

of all nearly marginal modes of the linearization of (2.1)–(2.7) around the quiescent
state (u, v, q, f) = (0, 0, 0, 0) in the unforced case ε = 0. As C → 0, the linearized
problem exhibits two kind of nearly marginal mode.

Surface modes account for surface waves and are the only ones considered so far
in weakly nonlinear theories. These modes exhibit a dispersion relation

λ = ±iω0 − (1± i)α1C
1/2 − α2C + O(C3/2), (3.1)

where the inviscid eigenfrequency ω0 > 0 and the coefficients α1 > 0 and α2 > 0
depend on the wavenumber k as

ω2
0 = k(1 + Tk2) tanh k, α1 = k(ω0/2)1/2/ sinh 2k,

α2 = k2[2 + (5 + 3 tanh2 k)]/(16 sinh2 k).

}
(3.2)

Thus, these modes are oscillatory, with a small (as C → 0) damping rate that results
from viscous dissipation in the Stokes boundary layer at the bottom plate and in the
bulk (essentially, the terms of orders C1/2 and C , respectively); the neglected terms
essentially come from viscous dissipation in the upper boundary layer at the free
surface. The velocity jump across the lower boundary layer decays (and thus α1 → 0)
exponentially as k →∞. Then, for a small but fixed value of C and moderately large
k it is advisable to use the three-term expansion displayed in (3.1), which yields a
good approximation for realistically small, fixed values of C and k in a wide range
(Martel & Knobloch 1997) as seen in figure 3, where the selected values of C and T
correspond to water in a 10.1 cm deep container. Similar, three-term expansions are
required for related two-dimensional and three-dimensional gravity–capillary wave
problems in finite geometries (Higuera, Nicolás & Vega 1994; Higuera & Nicolás
1997; Martel, Nicolás & Vega 1998).

Hydrodynamic modes (also called viscous modes) are those associated with the
streaming flow and exhibit a dispersion relation (Lamb 1932)

λ = −C[k2 + qn(k)
2] + O(C2) at C → 0, (3.3)
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where qn(k) are the solutions of qn tanh k = k tan qn. The associated eigenmodes yield
no free-surface deflection at leading order; thus, these modes can be ignored in a
strictly linear theory if only the free-surface deflection matters, but not in other
circumstances.

With these ideas in mind, let us now consider (2.1)–(2.7) in the limit (2.9). Outside
these two boundary layers, we consider solutions of the form

u = U0(y)eiωt[A(t)eikx − B(t)e−ikx] + c.c.+ us(x, y, t) + · · · ,
v = V0(y)eiωt[A(t)eikx + B(t)e−ikx] + c.c.+ vs(x, y, t) + · · · ,
q = Q0(y)eiωt[A(t)eikx + B(t)e−ikx] + c.c.+ qs(x, y, t) + · · · ,
f = eiωt[A(t)eikx + B(t)e−ikx] + c.c.+ fs(x, t) + · · · ,

 (3.4)

where c.c. stands for the complex conjugate and the horizontal wavenumber and the
inviscid eigenfunctions U0, V0 and Q0 are

k = 2mπ/L with m = integer, (3.5)

U0 = −kQ0/ω0, V0 = iQ0y/ω0, Q0 = ω2
0 cosh[k(y + 1)]/[k sinh k], (3.6)

in terms of the inviscid eigenfrequency ω0, which is related to the wavenumber k and
the forcing frequency 2ω by (3.2) and (2.9), respectively. In (3.4) we have displayed only
the leading order (in the limit (2.9)) oscillatory and non-oscillatory terms, the latter
being associated with the streaming flow and denoted hereinafter by the superscript
s. The former correspond to the only surface mode that is (subharmonically) excited
by the external forcing; the remaining non-excited surface modes are readily seen
to decay exponentially in the time scale associated with viscous dissipation and can
be ignored. The weakly nonlinear level of our description requires that the complex
amplitudes and the remaining slowly varying quantities be small and depend weakly
on time, i.e.

|A′| � |A| � 1, |B′| � |B| � 1, |ust | � |us| � 1, |vst | � |vs| � 1,

|qst | � |qs| � 1, |fst | � |fs| � 1.

3.1. The slow evolution of the complex amplitudes A and B

In order to obtain the amplitude equations giving A and B, we could proceed in a
standard manner, as follows. Add higher-order terms (proportional to powers of the
small quantities C1/2, ε, A, B, us, vs, qs and fs) to the expansions (3.4), and introduce
similar expansions for A′ and B′. When these expansions are inserted into (2.1)–(2.3),
and the coefficient of each asymptotic order is set to zero, a recurrent system of
equations in the bulk is obtained; the appropriate boundary conditions at y = −1
and 0 are obtained by a matching procedure with the solutions in the lower and upper
boundary layers, which must be analysed separately. Then, a solvability condition
applied to each of these problems provides the subsequent terms in the expansions
for A′ and B′, which (to the approximation relevant here) are

A′ =

[
−δ − id+ iα3|A|2 − iα4|B|2 − iα6L

−1

∫ 0

−1

∫ L

0

g(y)us dx dy

]
A+ iεα5B̄, (3.7)

B′ =

[
−δ − id+ iα3|B|2 − iα4|A|2 + iα6L

−1

∫ 0

−1

∫ L

0

g(y)us dx dy

]
B + iεα5Ā, (3.8)
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where the parameters

δ = α1C
1/2 + α2C, d = α1C

1/2 + ω0 − ω, (3.9)

are small (see (2.9)) and account for linear damping and detuning, respectively.
Now, the above procedure (which is quite tedious) can be avoided if proceeding as

follows. The coefficients associated with linear damping and detuning, δ and d, can
be taken from the dispersion relation (3.1). The remaining terms on the right-hand
side of (3.7)–(3.8) do not depend explicitly on C and coincide with their counterparts
in the usual amplitude equations in the literature (Miles 1993; Milner 1991; Hansen
& Alstrom 1997). For completeness, these and the function g are calculated in the
Appendix to be

α3 = 2ω0k
2 +

ω0k
2

4σ2

(9− σ2)(1− σ2) + (7− σ2)(3− σ2)Tk2

σ2 + (σ2 − 3)Tk2
− 3Tω0k

4

4(1 + Tk2)
, (3.10)

α4 =
ω0k

2

2

[
(σ2 + 1)2

σ2

1 + Tk2

1 + 4Tk2
+

4 + 7Tk2

1 + Tk2

]
, α5 = ω0kσ, (3.11)

α6 =
kσ

2ω0

, g(y) =
2ω0k cosh[2k(y + 1)]

sinh2 k
, (3.12)

where the eigenfrequency ω0 is as given by (3.2) and σ = tanh k.
Some remarks about the amplitude equations (3.7)–(3.8) are now in order.
(i) Some care must be taken with that calculation because the limit C → 0

is a singular perturbation limit and does not necessarily commute with the limit
|A|+ |B| → 0. However, a careful analysis of the oscillatory boundary layers (as that
in Nicolás & Vega 1996) shows that the limits C → 0 and |A|+ |B| → 0 do commute
as far as the calculation of those terms that are independent of C on the right-hand
sides of (3.7)–(3.8) is concerned.

(ii) The amplitude equations are invariant under the actions A→ Aeic, B → Be−ic

(for all c) and A ↔ B, x → −x, us → −us, which result from the invariance of
(2.1)–(2.7) under x-translations and left-right x-reflection. Thus, only one of these
equations need be derived.

(iii) We are not retaining the real parts of the coefficients of the cubic terms in
(3.7)–(3.8), which account for nonlinear damping and forcing and would be necessary
only near the instability threshold if detuning is appropriately small.

(iv) Since |us| will turn out to be of the order of |A|2 + |B|2, the new integral terms
in (3.7)–(3.8) are of the same order as that of the cubic terms and cannot be ignored.
Note that the new terms are conservative, namely they do not contribute to the
leading-order energy equation obtained by multiplying (3.7) and (3.8) by the complex
conjugates of A and B, adding and taking the real part. This is consistent with the
fact that the streaming flow velocity is small compared to the velocity associated with
the surface waves and thus it does not contribute to the kinetic energy at leading
order.

The slowly varying parts of the velocity components, us and vs, remain undetermined
at this stage. The slowly varying parts of momentum equations at leading order (just
give qsx = qsy = 0, and) do not involve us and vs, which are usually set to zero in
current Faraday wave theories invoking continuity and imposing zero vorticity. The
latter would be justified in the strictly inviscid case (if, in addition, the flow is initially
potential), but, for non-zero viscosity, vorticity is necessarily present in the oscillatory
boundary layers produced by the surface waves, and it can (and will) be convected
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and/or diffused to the bulk to yield a non-zero vortical flow, which is precisely the
streaming flow.

3.2. The streaming flow

The slowly varying parts of the velocity components, us and vs, are now calculated
from the continuity equation at order |us|+ |vs| and the momentum equations at order
(|A|2 + |B|2)(|us|+ |vs|). These lead to

usx + vsx = 0, (3.13)

ust + vs(usy − vsx) + qsx − C(usxx + vsyy) = V0(y)(Aeikx + Be−ikx)(V̄ 3
x − Ū3

y ) + c.c., (3.14)

vst − us(usy − vsx) + qsy − C(vsxx + vsyy) = U0(y)(Aeikx − Be−ikx)(Ū3
y − V̄ 3

x ) + c.c., (3.15)

where the overbar and c.c. stand for the complex conjugate and, in order that all terms
in (3.14)–(3.15) be of the same order, we are assuming that |us| ∼ |vs| ∼ C ∼ |A|2 ∼ |B|2
and that the slow time scale for the evolution of us and vs is t ∼ |A|−2; this assumption
will be relaxed below. Note that the oscillatory part of the velocity field at order |A|2
derives from a potential (see equation (A 3) in the Appendix) and thus does not
provide any contribution to the convective terms in (3.14)–(3.15); also, qsx = qsy = 0

at order |A|2 (see equations (A 4)–(A 5) in the Appendix) and thus |qsx| ∼ |qsy| ∼ |A|4.
U3 and V 3 are the velocity components of the oscillatory resonant part (i.e. that part
depending on the short time scale as exp(iωt)) at order |A|(|us| + |vs|), which satisfy
(add to equations (A 9)–(A 10) in the Appendix those oscillatory terms proportional
to eiω0t−ikx)

iωU3 + V0(y)(Aeikx + Be−ikx)(usy − vsx) = φx, (3.16)

iωV 3 −U0(y)(Aeikx − Be−ikx)(usy − vsx) = φy, (3.17)

where we are including on the right-hand sides those terms that derive from a
potential (which will not play any role below). Substitution of (3.16)–(3.17) into (3.14)
and (3.15) and invoking (3.6) yields, after some algebra,

ust + vs(usy − vsx) = −q̃sx + C(usxx + usyy), (3.18)

vst − [us + (|B|2 − |A|2)g(y)](usy − vsx) = −q̃sy + C(vsxx + vsyy), (3.19)

where the function g(= iω−1
0 d(U0V̄0)/dy + c.c.) coincides with that appearing in the

amplitude equations (3.7)–(3.8) (and given by (3.12)), and

q̃s = qs + [iω−1
0 U0V̄0(|A|2 − |B|2)(usy − vsx) + c.c.].

The momentum equations (3.18) and (3.19) coincide with the usual Navier–Stokes
equations, except for the vertical body force

(0,−(|B|2 − |A|2)g(y)(usy − vsx)), (3.20)

which is written in three dimensions as vSd × Ωs, where Ωs is the time-averaged
vorticity and

vSd = ((|B|2 − |A|2)g(y), 0). (3.21)

is the Stokes drift. The body force (3.20) is sometimes called vortex force generated by
vSd, and plays an important role on the stability of Langmuir circulations in the upper
layers of lakes and ocean (Leibovich & Paolucci 1981). The Stokes drift appears when
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calculating the Lagrangian (or mass-transport) velocity, vmt = (us, vs) + vSd, which is
the one associated with the time-averaged trajectories of material elements, in contrast
with the Eulerian velocity us, which is the time-averaged velocity.

The continuity and momentum equations (3.13), (3.18) and (3.19) apply in the bulk,
outside the above-mentioned boundary layers. The boundary conditions at y = −1
and 0 are obtained from matching conditions with the slowly varying part of the
velocity in the boundary layers, which must be analysed separately. In fact, in the
present two-dimensional setting, these boundary conditions are given by the following
formulae, first obtained by Schlichting (1932) and Longuet-Higgins (1953),

us = α7[iAB̄e2ikx + c.c.+ |B|2 − |A|2], vs = 0 at y = −1, (3.22)

∂us/∂y = α8(|B|2 − |A|2), vs = 0 at y = 0, (3.23)

where we are neglecting terms of the order of C1/2(|A|2 + |B|2) + (|A|2 + |B|2)2 and the
constants α7 and α8 are

α7 = 3ω0k/ sinh2 k, α8 = 8ω0k
2/ tanh k. (3.24)

Finally, the boundary conditions (2.7) yield

us, vs and q̃s are periodic, of period L, in x. (3.25)

Equations (3.13), (3.18)–(3.19), (3.22)–(3.23) and (3.25) will be used in § 4 to analyse
the streaming flow. Note that our assumption above on the orders of magnitude of us,
vs, C and the slow time variable is not necessary. This is so because equations (3.18)
and (3.19) have been obtained as a balance between the leading-order effects of inertia
(including convection), pressure gradient and viscous dissipation, which are the only
ingredients on the original momentum equations (2.2)–(2.3) that can contribute to the
streaming flow. In particular, the equations remain valid as C � |A|2 + |B|2, which will
be a relevant limit below. In fact, viscous effects cannot be ignored in the analysis of
the streaming flow, however large the effective Reynolds number associated with that
flow can be. This is so because the streaming flow is forced by a tangential velocity
and a tangential stress at the lower and upper boundaries (see (3.22) and (3.23)), and
these two shear mechanisms would not force any flow in the absence of viscosity.
Note also that the forcing tangential velocity and stress are independent of viscosity
(i.e. of C) to leading order, and thus they converge to non-zero values as C → 0.
Thus, this is a good example to illustrate that the limits C → 0 and |A|+ |B| → 0 do
not commute, as anticipated in § 2.1.

4. Coupled spatial phase-streaming flow equations
The coupled evolution of the surface waves and the streaming flow is given by the

system of equations and boundary conditions (3.7)–(3.8), (3.13), (3.18)–(3.19), (3.22),
(3.23) and (3.25). These equations are first reduced in § 4.1 to two systems of equations
that apply after a transient in the slow time scale associated with viscous dissipation.
The first system is decoupled and yields the evolution of the surface waves to a
drifting SW, which is determined up to a spatial phase. Once the amplitude of the
surface wave is determined, the second system gives the coupled evolution of the
spatial phase and the streaming flow.
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Figure 4. Amplitude of ——, the stable and – – –, unstable shifted SWs (non-trivial steady states
of (4.3)–(4.4)) in terms of the forcing amplitude.

4.1. Derivation of the coupled spatial phase-streaming flow equations

The effect of the streaming flow on the complex amplitudes can be decoupled using
the new complex amplitudes and the spatial phase, defined as

A = A0e
−ikψ, B = B0e

ikψ, (4.1)

with

dψ/dt = [α6/(kL)]

∫ 0

−1

∫ L

0

g(y)us(x, y, t) dx dy. (4.2)

Substituting these into (3.7)–(3.8), A0 and B0 are seen to satisfy

A′0 = [−δ − id+ iα3|A0|2 − iα4|B0|2]A0 + iεα5B̄0, (4.3)

B′0 = [−δ − id+ iα3|B0|2 − iα4|A0|2]B0 + iεα5Ā0. (4.4)

These are the standard amplitude equations that have been systematically used in
the weakly nonlinear description of spatially uniform Faraday waves. Their solutions
relax to steady states. This property is always taken for granted in the literature;
the proof is somewhat standard, but non-trivial and outside the scope of this paper.
The zero steady state of (4.3)–(4.4) is unstable whenever the forcing amplitude ε is
larger than its threshold value, i.e. ε > εc ≡

√
δ2 + d2/|α5|. If α3 − α4 6= 0, as we

assume hereinafter (otherwise some higher-order terms must be added to (4.3)–(4.4)),
the remaining steady states are of the form

A0 = B0 = R0e
iφ0 , (4.5)

where φ0 is an arbitrary temporal phase and R0 > 0 is given by

R2
0 = [d± (α2

5ε
2 − δ2)1/2]/(α3 − α4). (4.6)

These steady states build a branch that bifurcates from the flat state at ε = εc and
is either monotone (if d/(α3 − α4) < 0) or C-shaped, see figure 4; in the latter case,
the intermediate solutions are unstable. Note that since (4.5) holds, the surface wave
associated with these steady states is a drifting SW with an amplitude R0; and ψ can
be seen as its spatial phase, for to leading order the free surface deflection is given by

f(x, t) = 4R0 cos(ωt+ φ0) cos[k(x− ψ)], (4.7)

as readily obtained from (3.4), (4.1) and (4.5). The drift velocity of the waves dψ/dt
is due to the streaming flow (4.2) and it is essentially different from that analysed in
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Douady et al. (1989) that was due to the breaking of the spatial reflection symmetry
of the waves, namely it required |A| 6= |B|.

Thus, after a transient, we can assume that (4.5) holds and rewrite (3.13), (3.18)–
(3.19), (3.22)–(3.23), (3.25) and (4.2) as

ũx + ṽy = 0, (4.8)

∂ũ/∂τ+ ṽ(ũy − ṽx) = −q̃x + Re−1(ũxx + ũyy), (4.9)

∂ṽ/∂τ− ũ(ũy − ṽx) = −q̃y + Re−1(ṽxx + ṽyy), (4.10)

ũ = − sin[2k(x− ψ)], ṽ = 0 at y = −1, (4.11)

∂ũ/∂y = ṽ = 0 at y = 0, (4.12)

ũ, ṽ and q̃ are x-periodic, of period L = 2mπ/k, (4.13)

dψ/dτ = L−1

∫ 0

−1

∫ L

0

G(y)ũ(x, y, τ) dx dy, (4.14)

in terms of the rescaled variables

τ = ReCt, ũ = us/(ReC), ṽ = vs/(ReC), q̃ = q̃s/(ReC)2, (4.15)

where m > 1 is an integer and the function G and the Reynolds number Re are

G(y) = 2k cosh[2k(y + 1)]/ sinh 2k, Re = 6R2
0ω0k/(C sinh2 k). (4.16)

Note that L−1
∫∫
G dx dy = 1, which is consistent with the invariance of (4.8)–(4.10)

and (4.14) under the action x → x + cτ, ũ → ũ + c, ψ = ψ + cτ, as required by the
invariance of (2.1)–(2.3) under Galilean transformations.

Equations (4.8)–(4.14) will be called coupled spatial phase-streaming flow (CSPSF)
equations, and ũ0 = dψ/dτ can be seen as a drift velocity of the drifting SWs. Those
solutions of the CSPSF equations with ũ0 = constant are precisely uniformly drifted
SWs, as are those encountered by Douady et al. (1989).

The CSPSF equations (4.8)–(4.14) depend only on the wavenumber k, spatial period
L = 2mπ/k and the effective Reynolds number Re. The latter is proportional to the
square of the wave steepness, R0k, which must be small. Since C is also small (of
the order of 10−4 for water in containers of depth of the order of 1 cm, as in the
experiment by Douady et al. 1989), Re can vary in a wide range. Assuming that T
is not large (which is true for gravity waves), (R0k)

2 6 0.1 and C > 10−6, and using
(3.2) and (4.16)

0 6 Re 6 12× 104/(ω0 sinh 2k). (4.17)

4.2. Large time dynamics of the coupled spatial phase-streaming flow equations

The CSPSF equations (4.8)–(4.14) are invariant under the symmetries

x→ x+ c, ψ → ψ + c, (4.18)

x→ −x, ũ→ −ũ, ψ → −ψ, (4.19)

x→ x+ 1
2
L. (4.20)

The first two symmetries come from the invariance of the original problem (2.1)–
(2.7) under horizontal translation and reflection. The reflection–symmetric attractors
(invariant under (4.19) after a translation, referred to as r-symmetric, will be called
locally or globally r-symmetric depending on whether they are r-symmetric for all τ
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Figure 5. Streamlines and vorticity colour (red = positive vorticity, blue = negative vorticity) map
of the basic steady state of (4.8)–(4.14) for Re = 260, k = 2.37 and m = 1 (L = 2.65). Thick vertical
lines are as in figure 2.

or they exhibit an r-symmetric orbit in phase space. The last symmetry (4.20) will
be useful when considering the dynamics of (4.8)–(4.14) for varying values of L.
In particular (when doubling L), attractors that are invariant under (4.20) are also
present in a cell of width 1

2
L, and will be called ( 1

2
L)-periodic.

The analysis of the attractors of the CSPSF equations (4.8)–(4.14) must rely on
numerics. The equations have been discretized by means of a spectral method in
the horizontal coordinate, an equispaced second-order finite-difference scheme in
the vertical coordinate, and a second-order semi-implicit method to march in time
(Canuto et al. 1988). The cheapest calculations, for Re < 450 and m = 1, require 128
Fourier modes and spatial and temporal step sizes ∆y = ∆τ = 0.01. In order to avoid
too expensive computations we shall restrict ourselves to the ranges 1 6 m 6 10 and
0 < Re < 900, although Re can take much larger values within the scope of the
theory, especially for moderate values of k, see (4.17).

For small Re, the CSPSF equations become linear and exhibit a unique attractor,
which is an r-symmetric steady state; thus it exhibits no drift, namely ψ = constant,
according to (4.14), and corresponds to a standard SW. The streamlines are as those
plotted in figures 2(a) and 5 for m = 1 and two representative values of (k, Re); for
comparison with other attractors, the associated vorticity (Ω̃ = ṽx− ũy) colour map is
also given in figure 5. As Re is increased, this steady state becomes unstable through
a Hopf bifurcation at a threshold value Re = Rec, which is plotted vs. k with a solid
line in figure 6. This plot has been obtained for m = 1 but has been checked to remain
unchanged for m = 10. This instability threshold is always larger than that obtained
when the effect of the spatial phase is ignored (dashed line); thus, the coupling to the
spatial phase has a stabilizing effect on the streaming flow. Note that the instability
occurs when Re is large. Thus, we can distinguish a convective timescale, τ ∼ 1 and
a viscous timescale, τ ∼ Re. The frequency of the unstable modes at threshold is of
order unity, showing that this instability is associated mainly with convective effects.

Now we consider two representative bifurcation diagrams using Re as a bifurcation
parameter, which is varied in small steps. At each step we take as the initial condition
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Figure 6. Stability diagram of the basic solution. ——, Hopf bifurcation of the CSPSF equations
(4.8)–(4.14) and – – –, pitchfork bifurcation for the uncoupled equations (4.8)–(4.13), with ψ = 0.
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Figure 7. Bifurcation diagram of the CSPSF equations for k = 4 and m = 1 (L = 1
2
π).

a point in the attractor for the previous step plus a small perturbation containing
all Fourier modes. We integrate the CSPSF equations in an initial time interval to
eliminate transient behaviours and then plot the following quantities, which are useful
to appreciate r-symmetric and ( 1

2
L)-periodic attractors

‖ψ′‖r = ψ′(τj), ‖Ω‖p = ‖Ωodd(τj)‖L2
, (4.21)

where τj are the stationary points of ψ′ (namely ψ′′(τj) = 0), ‖ · ‖L2
is the L2 norm

and

Ωodd =
∑
n=odd

Ωje
i2πnx/L if Ω =

n=∞∑
n=−∞

Ωje
i2πnx/L. (4.22)
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Figure 8. Bifurcation diagram of the CSPSF equations for k = 2.37 and m = 1 (L = 2.65).

The bifurcation diagram for k = 4 and m = 1 is plotted in figure 7, where according
to the restriction (4.17) only the interval 0 < Re < 160 is of interest here. The Hopf
bifurcation at Re = Rec ' 105 is supercritical and the resulting limit cycle is (not
locally r-symmetric but is) globally r-symmetric (the plot of ‖ψ′‖r is symmetric)
and locally ( 1

2
L)-periodic (‖Ω‖p ≡ 0). The associated pattern is an array of laterally

oscillating eddies, whose size also oscillates, and is qualitatively similar to that in
figure 9(a). The period varies between 46 and 79 as Re increases from 105 to 160.
Finally, we have checked that this bifurcation diagram remains unchanged as m is
increased up to m = 10.

As an example of a more complex bifurcation diagram, we give in figure 8
that obtained for k = 2.37 and m = 1 (thus L = 2.65). The Hopf bifurcation at
Re = Rec ' 270 is again supercritical. The resulting limit cycle is ( 1

2
L)-periodic and

globally r-symmetric, like that in figure 9(a), where for illustration a thick vertical
line is plotted at the nodes of the primary surface wave, which are

xnode = ψ + π/(2k) and xnode = ψ + 3π/(2k), (4.23)

according to (4.7); note that the nodes oscillate only slightly. This branch of limit
cycles losses stability at Re = Re1 ' 291.5 (the unstable part, plotted with dashed lines,
has been computed imposing ( 1

2
L)-periodicity), where a new family of limit cycles

bifurcates that are still globally r-symmetric but no longer ( 1
2
L)-periodic (‖Ω‖p is no

longer zero). One of these is given in figure 9(b), where the lack of ( 1
2
L)-periodicity

is apparent and it is seen that this limit cycle again involves only a slight motion
of the surface wave. Note that this is a supercritical symmetry breaking bifurcation
that produces the solution in figure 9(b) and also that obtained upon applying a
( 1

2
L)-translation, but both solutions yield the same point in figure 8. Note also that

the plot of ‖Ω‖p shows only one point for each limit cycle; this is so because the
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Figure 9. Vorticity colour maps at equispaced values of τ in the stable limit cycle for k = 2.37,
m = 1 and (a) Re = 290 and (b) Re = 400. Thick vertical lines are as in figure 2.
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Figure 10. Streamlines and vorticity colour map in moving axes of the streaming flow produced
by the drifted standing wave at Re = 325. Thick vertical lines are as in figure 2.
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Figure 11. Streamlines and vorticity colour map of the stable steady state in figure 8 at Re = 850.
Thick vertical lines are as in figure 2.

velocity field at two values of τ where ψ′ reaches a maximum and a minimum are
obtained from each other by a translation and an x-reflection. This non (1

2
L)-periodic

limit cycle is stable in the interval Re1 < Re < Re2 ' 466, where it loses stability
and the system jumps to a new branch of travelling wave solutions, which exhibit
a constant drift velocity, ψ′ = ũ0, and are steady in a reference frame moving at a
speed ũ0; the streamlines and vorticity contours in the moving frame (using the new
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Figure 12. Bifurcation diagram of the CSPSF equations for k = 2.37 and m = 2.

horizontal velocity ũ− ũ0) are plotted in figure 10. Thus, these attractors correspond
to the drifted SWs mentioned above, and are neither r-symmetric (which could not
be because reflection symmetry is lost in the moving frame) nor (1

2
L)-periodic. In

fact, this new branch of solutions exists in a wide range 323 ' R3
e < Re < Re4 ' 800

and thus the system exhibits hysteresis. Note that the drift velocity ũ0 = ψ′ decreases
as Re increases. At Re = Re3 the drifted SWs lose stability at a supercritical Hopf
bifurcation to limit cycles that are neither r-symmetric nor ( 1

2
L)-periodic and in turn

lose stability at Re = Re5 ' 319, where the system jumps to the branch of r-symmetric
but not ( 1

2
L)-periodic limit cycles described above. At Re = Re4 instead, the drifted

SWs disappear at a supercritical (reversed) bifurcation that yields new r-symmetric
(but not ( 1

2
L)-periodic) steady states that are like that in figure 11. Thus, these are

quite different from the ( 1
2
L)-periodic steady state that existed for Re < Rec (cf.

figure 4). Note that when the bifurcation at Re = Re4 is seen for decreased values of
Re, it is a standard parity-breaking bifurcation (Greene & Kim 1988; Dangelmayr,
Hettel & Knobloch 1997), which appears in systems invariant under reflection and
translation and produces a drift (like the one here) of the patterns under generic
conditions.

If k = 2.37, as in figure 8, but m = 2 then we obtain a somewhat different bifurcation
diagram plotted in figure 12. The bifurcations at Re = Rec and Re = Re1 remain
unchanged, but now the branch of non ( 1

2
L)-periodic limit cycles born at Re = Re1

loses stability at Re = R̂e
2 ' 410. This bifurcation was not present in the case m = 1

(cf. figure 8), where the instability happened at Re = Re2 ' 466 < R̂e
2

and the system
jumped to a branch of travelling waves that are now unstable and plotted with a

dashed line in figure 12. At Re = R̂e
2
, the system jumps to a steady state whose
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Figure 13. Streamlines and vorticity colour map of the stable steady state in figure 12 at
Re = 418. Thick vertical lines are as in figure 2.

0.05

0

–0.05

t
0 500 1000

dψ

dt

t
0 500 1000

ψ(t)

0.05

0

–0.05
0 500 1000

dψ

dt

0 500 1000

ψ(t)

0.05

0

–0.05
0 500 1000

dψ

dt

1

0

–1
0 500 1000

ψ(t)

0.05

0

–0.05
0 500 1000

dψ

dt

1.0

0.5

0

–0.5
0 500 1000

ψ(t) Re = 480

510

560

610

1

0

–1

1

0

–1

Figure 14. Plots ψ′ vs. τ and ψ vs. τ for some representative more complex attractors for k = 2.37,
m = 2 and the indicated values of Re.

streamlines are plotted in figure 13. This steady state is locally r-symmetric (thus
exhibits no drift) but not ( 1

2
L)-periodic; thus it was not present for m = 1 and differs

from the steady states found there, even though the streamlines are quite similar

to those in figure 11. These new steady states are stable only for Re > R̂e
3 ' 232,

where the basic steady state is recovered. Thus, the system exhibits considerable
hysteresis. The attractors described so far are the only ones that are obtained when
slowly moving Re up and down; but, in addition, if a non-small perturbation is added
to the steady state at large Re we obtain the new branch of drifted SWs plotted in
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figure 12. These are not ( 1
2
L)-periodic and thus are not present at m = 1. Furthermore

their drift velocity increases as Re increases, in contrast to the drifted SWs in figure 8.

The drifted SWs lose stability as Re is decreased, at Re = R̂e
4 ' 620. For smaller

Re, in the range 475 < Re < R̂e
4
, the system shows more complex (periodic, quasi-

periodic, chaotic) attractors, like those plotted in figure 14; note that these usually
show oscillations in both the convective (τ ∼ 1) and the diffusive (τ ∼ Re) timescales.
However, we neither pursue these nor look for additional attractors. Instead, given the
strong differences between the bifurcation diagrams in figures 8 and 12, the natural
question arises of which part of the bifurcation diagrams in these figures remain at
large aspect ratio. We have considered the (computationally expensive) case m = 10
and found that the first two bifurcations at Rec and Re1 and the bifurcated branches

remain unchanged for Re < R̂e
2
.

5. Conclusions
We have derived in § 2 a system of coupled amplitude-streaming flow equations for

the weakly nonlinear evolution, at small viscosity, of parametrically excited surface
waves in a two-dimensional liquid layer supported by a horizontal plate, which
is vertically vibrated. We imposed periodic boundary conditions in the horizontal
direction, intending to model an annular container. For simplicity, we considered
a monochromatic surface wave and ignored wave modulation. We have derived
from first principles the amplitude equations, which are two complex ODEs that
include the usual terms associated with inertia, linear damping, detuning, conservative
cubic nonlinearity and forcing, and a new term that accounts for coupling with the
streaming flow. The streaming flow is described by the usual continuity and Navier–
Stokes equations, except for a horizontal vortex force driven by the Stokes drift.
The boundary conditions include a tangential velocity and a tangential stress at the
lower and upper boundaries, respectively, which are independent of viscosity and
depend quadratically on the complex amplitudes, according to well-known formulae
due to Schlichting (1932) and Longuet-Higgins (1953). These equations have been
further simplified by taking advantage of the fact that the surface wave evolves,
in the time scale associated with surface-wave damping, to a drifting SW, which is
completely determined (independently of the streaming flow) up to a spatial phase.
Thus, the problem is reduced to a set of coupled spatial phase-streaming flow (CSPSF)
equations. These equations are invariant under horizontal translation and reflection,
and depend on an effective Reynolds number Re, the wavelength of the surface
waves k and the length of the container, L = 2mπ/k for some integer m. The CSPSF
equations have been numerically integrated and the range 0 < k < 6, 0 < Re < 900,
for m = 1, 2 and 10, has been explored. The main conclusions are:

(i) If the coupling of the streaming flow with the surface waves is removed, then
the surface wave nodes are stationary. The associated streaming flow lose reflection
symmetry for moderate values of Re, and the resulting non-symmetric flow should
produce a drift of the waves, which is in contradiction with ignoring the effect of the
streaming flow on the surface waves. The coupling to the streaming flow prevents this
instability (and stabilizes the SWs) for moderate Re, but these SWs exhibit a Hopf
bifurcation at a larger value of Re. This primary bifurcation seems to be present for
all k and to remain unchanged at large aspect ratio.

(ii) In the derivation of these equations we have seen that it is inconsistent to
ignore a priori the effect of the streaming flow and retain the usual cubic nonlinearity,
because both of them are of the same order. Also, the streaming flow provides a
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natural mechanism to produce (or prevent) drift instabilities without the need to
consider higher-order (quintic, etc.) terms (as in, e.g. Crawford, Knobloch & Riecke
1990; Fauve et al. 1991).

The following conclusions are also relevant:
(iii) For some values of k there are some additional bifurcations to drifted SWs

(which are standard SWs in a reference frame moving at a constant speed), non-
symmetric limit cycles and more complex oscillatory attractors, but these depend on
both k and L.

(iv) In oscillatory attractors, oscillations occur frequently in the convective time
scale, though these are sometimes modulated in the slower viscous time scale. Ac-
cording to our non-dimensionalization in § 1, the latter time scale is of the order of
h2/ν, where h is the height of the container and ν is the kinematic viscosity; this is
of the order of 1 min for water if h = 0.8 cm (as in Douady et al. 1989), but it can be
much larger than that for larger h (e.g. of the order of 104 s, that is, of the order of
hours if h = 10 cm).

As to the relevance of the results above in explaining/predicting experimental
behaviours, the restricted two-dimensional formulation above prevents quantitative
predictions, but the main conclusion, (ii), obviously applies in the three-dimensional
case as well. The main new ingredient in three-dimensions is the presence of the lateral
walls, whose attached boundary layers also produce a horizontal tangential streaming
velocity, which enhances the coupling between the surface waves and the streaming
flow. The remaining qualitative conclusions are also expected to apply in three-
dimensions. In fact, the drifted standing waves and the various oscillatory solutions
obtained above are reminiscent of the steadily rotating and laterally oscillating struc-
tures found experimentally by Douady et al. (1989), although no further comparison
is possible because no quantitative results on these structures were provided.

Some additional physical effects neglected above could have a role in enhancing drift
instabilities in two-dimensions. For instance, surface contamination (which should be
expected in water unless great care is taken in the experimental set-up) changes
dramatically the structure of the oscillatory boundary layer attached to the free
surface (Henderson & Miles 1994; Nicolás & Vega 2000), which becomes somewhat
similar to the Stokes boundary layer attached to solid walls, and also yields a forcing
tangential velocity for the streaming flow. Thus, the structure of the streaming flow
associated with SWs completely changes and its stability properties might change as
well, but this is well ahead the scope of this paper.

Research partially supported by DGI and NASA, under Grants BFM2001-2363
and NAG3-2152.

Appendix. Nonlinear terms in the amplitude equations
Here, we derive those terms in the amplitude equations (3.7)–(3.8) that account

for cubic nonlinearity, parametric forcing and coupling with the streaming flow. As
explained in § 2.1, these terms can be derived in the strictly inviscid limit

C = 0, (A 1)

when the boundary layers disappear and the analysis is much simpler. For the sake
of clarity, we rescale the complex amplitudes, the forcing amplitude and the slowly
varying part of the velocity components as

(A,B) = µ(A0, B0), ε = µ2, (us, vs, qs, fs) = µ2(us1, v
s
1, q

s
1, f

s
1),
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where 0� µ� 1 and |A0|, |B0|, |us1| and |vs1| are treated as O(1) quantities. Then the
expansions (3.4) are rewritten as

u = µeiω0tU0(A0e
ikx − B0e

−ikx) + c.c.+ µ2u1 + µ3u2 + · · · ,
(v, q) = µeiω0t(V0, Q0)(A0e

ikx + B0e
−ikx) + c.c.+ µ2(v1, q1) + µ3(v2, q2) + · · · ,

f = µeiω0t(A0e
ikx + B0e

−ikx) + c.c.+ µ2f1 + µ3f2 + · · · ,
and the right-hand side of the amplitude equation (3.7), as

A′ = µ3H + · · · , (A 2)

where those terms depending on C have been ignored, according to (A 1). Notice
that the displayed term on the right-hand side of (A 2) includes the three terms we
are looking for. We insert (A 1)–(A 2) into (2.1)–(2.8) and set to zero the coefficients
of µ2 and µ3. At order µ2 we obtain a non-singular linear problem whose solution is
readily found as

u1 = us1 + (i/2ω0)∂q
o
1/∂x, v1 = vs1 + (i/2ω0)∂q

o
1/∂y,

q1 = qs1 + qo1 , f1 = fs1 + fo1 , (A 3)

where

qs1 =
σ2 − 1

σ2
ω2

0(|A0|2 + |B0|2), fs1 =
(σ2 + 1)ω2

0

σ2(1 + 4Tk2)
A0B̄0e

2ikx + c.c., (A 4)

qo1 = −e2iω0t

[
3σ2 + 1

σ2
ω2

0A0B0 + iγ1

cosh[2k(y + 1)]

sinh 2k
(A2

0e
2ikx + B2

0e−2ikx)

]
+ c.c., (A 5)

fo1 = γ2e
2iω0t(A2

0e
2ikx + B2

0e−2ikx) + c.c., (A 6)

with σ = tanh k as above, and

γ1 =
3ω0[1− σ2 + (3− σ2)Tk2]

2σ[σ2 + (σ2 − 3)Tk2]
, γ2 =

(3− σ2)k(1 + Tk2)

2σ[σ2 + (σ2 − 3)Tk2]
. (A 7)

Note that the superscripts a and o stand for the slowly varying and the short-time-
oscillating parts.

Now, the linear problem at order µ3 is

u2x + v2y = 0, (A 8)

u3t + q3x = −[V0(u
s
1y − vs1x)A0 +U0H]eiω0t+ikx + NRT, (A 9)

v3t + q3y = −[U0(u
s
1y − vs1x)A0 + V0H]eiω0t+ikx + NRT, (A 10)

in x ∈ R, −1 < y < 0, with boundary conditions

v3 = 0 at y = −1,

v3 − f3t = [(ikus1 − vs1y + iγ3|A0|2 + iγ4|B0|2A0 +H]eiω0t+ikx + NRT,

q3 − f3 + Tf3xx = [(U0u
s
1 + V0v

s
1 + γ5|A0|2 + γ6|B0|2)A0 − ω2

0B̄0e
2iω0t+ikx + NRT,

at y = 0, and

u3, v3, q3 and f3 periodic, of period L = 2mπ/k, in x,



78 E. Mart́ın, C. Martel and J. M. Vega

where NRT stands for non-resonant terms (depending on t as exp(irω0t+ iskx), with
(r, s) 6= (1, 1)) and

γ3 = −(3k2ω0σ + 2γ1k
2(1 + σ2) + 2γ2ωk)/(2σ),

γ4 = ω0k
3[2σ2 + 1 + (1 + 5σ2)Tk2]/[σ(1 + 4Tk2)],

γ5 = [8kσω2
0 + 2γ1k(1− σ2)ω0 − 2γ2σ

2ω2
0 − 3k2(1 + Tk2)σ2]/(2σ2),

γ6 = −3k2(1 + 2Tk2)− (1 + σ2)ω4
0/[σ

2(1 + 4Tk2)],

with γ1 and γ2 as given by (A 7) and σ = tanh k, as above. Now H is readily
calculated by requiring the solution of the O(µ3) problem above to be bounded in
the short-time-scale t ∼ 1. That solvability condition is readily applied through the
equation that results when (A 9) and (A 10) are multiplied by Ū0 exp(−iω0t− ikx) and
V̄0 exp(−iω0t− ikx), respectively, the resulting equations are added and integrated in
0 < x < L, −1 < y < 0, integration by parts is applied, and the continuity equation,
the boundary conditions and equations (3.6) are taken into account. After some
algebra, we obtain

H = i(α3|A0|2−α4|B0|2)A0+iα5B̄0e
2i(ω−ω0)t−iα6

∫ L

0

∫ o

−1

g(y)us1(x, y, t) dx dy A0, (A 11)

where α3, . . . , α6 and g are as given in equations (3.10)–(3.11), in § 3. Finally, we need
only replace (A0, B0) by (A,B)ei(ω−ω0)t to obtain (3.7)–(3.8).
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